LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solving of the Schrodinger equation analytically with an approximated scheme of the Woods–Saxon potential by the systematical method of Nikiforov–Uvarov

Photo from wikipedia

The analytic solutions of the Schrodinger equation for the Woods–Saxon (WS) potential and also for the generalized WS potential are obtained for the [Formula: see text]-wave nonrelativistic spectrum, with an… Click to show full abstract

The analytic solutions of the Schrodinger equation for the Woods–Saxon (WS) potential and also for the generalized WS potential are obtained for the [Formula: see text]-wave nonrelativistic spectrum, with an approximated form of the WS potential and centrifugal term. Due to this fact that the potential is an exponential type and the centrifugal is a radial term, we have to use an approximated scheme. First, the Nikiforov–Uvarov (NU) method is introduced in brief, which is a systematical method, and then Schrodinger equation is solved analytically. Energy eigenvalues and the corresponding eigenvector are derived analytically by using the NU method. After that, the generalized WS potential is discussed at the end.

Keywords: woods saxon; saxon potential; approximated scheme; method; schrodinger equation; equation

Journal Title: International Journal of Modern Physics E
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.