LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ANALYTICAL APPROXIMATE SOLUTIONS OF (N + 1)-DIMENSIONAL FRACTAL HARRY DYM EQUATIONS

Photo by makcedward from unsplash

The new fractal models of the [Formula: see text]-dimensional and [Formula: see text]-dimensional nonlinear local fractional Harry Dym equation (HDE) on Cantor sets are derived and the analytical approximate solutions… Click to show full abstract

The new fractal models of the [Formula: see text]-dimensional and [Formula: see text]-dimensional nonlinear local fractional Harry Dym equation (HDE) on Cantor sets are derived and the analytical approximate solutions of the above two new models are obtained by coupling the fractional complex transform via local fractional derivative (LFD) and local fractional reduced differential transform method (LFRDTM). Fractional complex transform for functions of [Formula: see text]-dimensional variables is generalized and the theorems of [Formula: see text]-dimensional LFRDTM are supplementary extended. The travelling wave solutions of the fractal HDE show that the proposed LFRDTM is effective and simple for obtaining approximate solutions of nonlinear local fractional partial differential equations.

Keywords: local fractional; harry dym; approximate solutions; see text; formula see; text dimensional

Journal Title: Fractals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.