LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

KOZENY–CARMAN CONSTANT FOR GAS FLOW THROUGH FIBROUS POROUS MEDIA BY FRACTAL-MONTE CARLO SIMULATIONS

Photo by pask_07 from unsplash

In this paper, the Kozeny–Carman constant of fibrous porous media is simulated by the Fractal-Monte Carlo technique. The proposed probability model of the Kozeny–Carman constant is obtained based on the… Click to show full abstract

In this paper, the Kozeny–Carman constant of fibrous porous media is simulated by the Fractal-Monte Carlo technique. The proposed probability model of the Kozeny–Carman constant is obtained based on the fractal distribution of pore size in fibrous porous media, and thus can be expressed as a function of structural parameters of fibrous porous media, including porosity, micro-pore size, fiber diameter, tortuosity fractal dimension and area fractal dimension of pores. Our results demonstrate that the Kozeny–Carman constant of fibrous porous media increases with increases in tortuosity fractal dimension and fiber diameter. Our results also illustrate a satisfying agreement of the Fractal Monte-Carlo simulations obtained by the proposed model and the existing experimental data. Therefore, the proposed Fractal-Monte Carlo technique can be used to characterize other transport properties of fluid in fibrous porous media.

Keywords: kozeny carman; carman constant; monte carlo; porous media; fibrous porous; fractal monte

Journal Title: Fractals
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.