LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Further Insights Into Time-Integration Method Based on Bernstein Polynomials and Bezier Curve for Structural Dynamics

Photo by jontyson from unsplash

In [M. M. Malakiyeh, S. Shojaee and S. Hamzehei-Javaran, Development of a direct time integration method based on Bezier curve and 5th-order Berstein basis function, Comput. Struct. 194 (2108) 15–31]… Click to show full abstract

In [M. M. Malakiyeh, S. Shojaee and S. Hamzehei-Javaran, Development of a direct time integration method based on Bezier curve and 5th-order Berstein basis function, Comput. Struct. 194 (2108) 15–31] an unconditionally stable implicit time-integration method using the Bezier curve was proposed for solving structural dynamic problems. In this study, a new class of the previous algorithm is presented by using the Bernstein polynomials and the Bezier curve as the interpolation functions for solving the equations of motion with the possibility of using large time steps. The spectral radius, period elongation, amplitude decay and overshooting of the present method are investigated and compared with some other methods. To show the high-performance, robustness and validity of this method, five numerical examples are presented. The theoretical analysis and numerical examples show that the proposed method has low dissipation in the lower modes and high dissipation in the higher modes in comparison with the other methods reported in the literature.

Keywords: bezier curve; time; time integration; integration method

Journal Title: International Journal of Structural Stability and Dynamics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.