LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Characterization of Steel Decks with Damping Material by Impact Test

Acoustic insulation optimization of the ship decks to contain impact noise is generally obtained by adopting suitable types of viscoelastic resilient materials. For this purpose, it is necessary to be… Click to show full abstract

Acoustic insulation optimization of the ship decks to contain impact noise is generally obtained by adopting suitable types of viscoelastic resilient materials. For this purpose, it is necessary to be able to make a correct choice of material. This is obtained by experimentally identifying the vibro-acoustic behavior of the combined semi-reverberant room and floor system according to an ISO standard (ISO 16283-2). These tests are generally onerous as they require the availability of the floor with both trimmed and untrimmed configurations. In addition, qualified technicians are needed to correctly spread the material on the floor. Finally, after the test has ended, the material must be removed and disposed of properly. To reduce this wasted time and cost, in this paper, a new methodology is proposed that predicts the vibro-acoustic behavior of the floor and viscoelastic material assembled together starting from separate dynamic information of the two components. Once these two elements are properly experimentally identified, the proposed method foresees the vibro-acoustic response of the overall system in presence of an impact footfall excitation.

Keywords: vibro acoustic; characterization steel; impact; material; floor; dynamic characterization

Journal Title: International Journal of Structural Stability and Dynamics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.