It is well known that the classical diagram lemmas of homological algebra for abelian groups can be generalized to non-abelian group-like structures, such as groups, rings, algebras, loops, etc. In… Click to show full abstract
It is well known that the classical diagram lemmas of homological algebra for abelian groups can be generalized to non-abelian group-like structures, such as groups, rings, algebras, loops, etc. In this paper, we establish such a generalization of the “salamander lemma” due to G. M. Bergman, in a self-dual axiomatic context (developed originally by Z. Janelidze), which applies to all usual non-abelian group-like structures and also covers axiomatic contexts such as semi-abelian categories in the sense of G. Janelidze, L. Márki and W. Tholen and exact categories in the sense of M. Grandis.
               
Click one of the above tabs to view related content.