We prove that if [Formula: see text] is either a hypercentral-by-finite group or a soluble Baer group and if [Formula: see text] has finitely many non-isomorphic factor-groups, then [Formula: see… Click to show full abstract
We prove that if [Formula: see text] is either a hypercentral-by-finite group or a soluble Baer group and if [Formula: see text] has finitely many non-isomorphic factor-groups, then [Formula: see text] is a Chernikov group. The converse is also true. Furthermore, we give some information on the structure of a metabelian group with finitely many non-isomorphic factor-groups.
               
Click one of the above tabs to view related content.