Let [Formula: see text] be a commutative artinian ring and [Formula: see text] a small Ext-finite Krull–Schmidt [Formula: see text]-abelian [Formula: see text]-category with enough projectives and injectives. We introduce… Click to show full abstract
Let [Formula: see text] be a commutative artinian ring and [Formula: see text] a small Ext-finite Krull–Schmidt [Formula: see text]-abelian [Formula: see text]-category with enough projectives and injectives. We introduce two full subcategories [Formula: see text] and [Formula: see text] of [Formula: see text] in terms of the representable functors from the stable category of [Formula: see text] to category of finitely generated [Formula: see text]-modules. Moreover, we define two additive functors [Formula: see text] and [Formula: see text], which are mutually quasi-inverse equivalences between the stable categories of this two full subcategories. We give an equivalent characterization on the existence of [Formula: see text]-Auslander–Reiten sequences using determined morphisms.
               
Click one of the above tabs to view related content.