Glycoproteins play an important and ubiquitous role in many biological processes such as protein folding, cell-to-cell signaling, invading microorganism infection, tumor metastasis, and leukocyte trafficking. The key mechanism of glycoproteins… Click to show full abstract
Glycoproteins play an important and ubiquitous role in many biological processes such as protein folding, cell-to-cell signaling, invading microorganism infection, tumor metastasis, and leukocyte trafficking. The key mechanism of glycoproteins must be revealed to model and refine glycosylated protein recognition, which will eventually assist in the design and discovery of carbohydrate-derived therapeutics. Experimental procedures involving wet-lab experiments to reveal glycoproteins are very time-consuming, laborious, and highly costly. However, costly and tedious experimental procedures can be assisted by ranking the most probable glycoproteins through computational methods with improved accuracy. In this study, we have proposed a novel machine learning-based predictive model for glycoproteins identification. Our proposed model is based on sequence-derived structural descriptors (SDSD) that fill the gap of unavailability of protein 3D structures and lack of accuracy in sequence information alone. Through a series of simulation studies, we have shown that our proposed model gives state-of-the-art generalization performance verified through various machine learning-centric and biologically relevant techniques and metrics. Through data mining in this study, we have also identified the role of descriptors in determining glycoproteins. Python-based standalone code together with a webserver implementation of our proposed model (COYOTE: identifiCation Of glYcoprOteins Through sEquences) is available at the URL: https://sites.google.com/view/wajidarshad/software.
               
Click one of the above tabs to view related content.