Gel zymography quantifies the activity of certain enzymes in tumor processes. These enzymes are widely used in medical diagnosis. In order to analyze them, experts classify the zymography spots into… Click to show full abstract
Gel zymography quantifies the activity of certain enzymes in tumor processes. These enzymes are widely used in medical diagnosis. In order to analyze them, experts classify the zymography spots into various classes according to their tonalities. This classification is done by visual analysis, which is what makes it a subjective process. This work proposes a methodology to carry out this classifications with a process that involves an unsupervised learning algorithm in the images, denoted as the GI algorithm. With the experiments shown in this paper, this methodology could constitute a tool that bioinformatics scientists can trust to perform the desired classification since it is a quantitative indicator to order the enzymatic activity of the spots in a zymography.
               
Click one of the above tabs to view related content.