LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antimicrobial peptides recognition using weighted physicochemical property encoding.

Photo by bhurnal from unsplash

Antimicrobial resistance is a major public health concern. Antimicrobial peptides (AMPs) are one of the host defense mechanisms responding efficiently against multidrug-resistant microbes. Since the process of screening AMPs from… Click to show full abstract

Antimicrobial resistance is a major public health concern. Antimicrobial peptides (AMPs) are one of the host defense mechanisms responding efficiently against multidrug-resistant microbes. Since the process of screening AMPs from a large number of peptides is still high-priced and time-consuming, the development of a precise and rapid computer-aided tool is essential for preliminary AMPs selection ahead of laboratory experiments. In this study, we proposed AMPs recognition models using a new peptide encoding method called amino acid index weight (AAIW). Four AMPs recognition models including antimicrobial, antibacterial, antiviral, and antifungal were trained based on datasets combined from the DRAMP and other published databases. These models achieved high performance compared to the preceding AMPs recognition models when evaluated on two independent test sets. All four models yielded over 93% in accuracy and 0.87 in Matthew's correlation coefficient (MCC). An online AMPs recognition server is accessible at https://amppred-aaiw.com.

Keywords: recognition; recognition using; amps recognition; antimicrobial peptides; peptides recognition; recognition models

Journal Title: Journal of bioinformatics and computational biology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.