This paper presents a novel equilibrium formulation, that uses the cell-based smoothed method and conic programming, for limit and shakedown analysis of structures. The virtual strains are computed using straining… Click to show full abstract
This paper presents a novel equilibrium formulation, that uses the cell-based smoothed method and conic programming, for limit and shakedown analysis of structures. The virtual strains are computed using straining cell-based smoothing technique based on elements of discretized mesh. Fictitious elastic stresses are also determined within the framework of finite element method (CS-FEM)-based Galerkin procedure, and equilibrium equations for residual stresses are satisfied in an average sense at every cell-based smoothing cell. All constrains are imposed at only one point in the smoothing domains, instead of Gauss points as in a standard FEM-based procedure. The resulting optimization problem is then handled using the highly efficient solvers. Various numerical examples are investigated, and obtained solutions are compared with available results in the literature.
               
Click one of the above tabs to view related content.