The objective of this paper is to study the effect of loosely bonded interface on torsional surface wave propagation in a fiber reinforced composite medium constrained between dry sandy layer… Click to show full abstract
The objective of this paper is to study the effect of loosely bonded interface on torsional surface wave propagation in a fiber reinforced composite medium constrained between dry sandy layer and an anisotropic gravitating poroelastic substrate. All the media are assumed to be under initial stress. The dispersion relation on this proposed multilayer ground structure has been derived in closed form under certain boundary conditions, which contain Whittaker function and its derivative, which is further expanded asymptotically, retaining up to only the linear terms. The numerical solution for the limiting case of torsional surface waves is also discussed. As a special case of the problem, when the entire medium is isotropic and one of the upper layer vanishes and removing the initial stress and gravity, the dispersion relation obtained is in agreement with the classical Love type wave equation. The influence of various technical constants, such as sandy parameter, reinforcement parameter, porosity parameter, Biot’s gravity parameter, loosely bonded parameters, initial stress of both the layers and half spaces on the phase velocity of torsional surface wave has been pointed out by means of graphs.
               
Click one of the above tabs to view related content.