LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coupled Thermal–Electrical–Mechanical Inhomogeneous Cell-Based Smoothed Finite Element Method for Transient Responses of Functionally Graded Piezoelectric Structures to Dynamic Loadings

Photo by rabinam from unsplash

A coupled thermal–electrical–mechanical inhomogeneous cell-based smoothed finite element method (CICS-FEM) is presented for the multi-physics coupling problems, the displacements, the electrical potential and the temperature are obtained by combining the… Click to show full abstract

A coupled thermal–electrical–mechanical inhomogeneous cell-based smoothed finite element method (CICS-FEM) is presented for the multi-physics coupling problems, the displacements, the electrical potential and the temperature are obtained by combining the modified Wilson-[Formula: see text] method. By introducing the gradient smoothing technique into the FE model, the system stiffness of the model is reduced. In addition, due to the absence of mapping, CICS-FEM is insensitive to mesh distortion. Curves and contour plots of displacements, electrical potential and temperature of three FGP structures are given in the article. The results shows that CICS-FEM possesses several advantages: (i) insensitive to mesh distortion; (ii) reduce the system stiffness; (iii) convergent and accuracy; (iv) efficient than FEM when the results are at the same accuracy.

Keywords: mechanical inhomogeneous; thermal electrical; method; inhomogeneous cell; coupled thermal; electrical mechanical

Journal Title: International Journal of Computational Methods
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.