LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparison Between Weakly-Compressible Smoothed Particle Hydrodynamics (WCSPH) and Moving Particle Semi-Implicit (MPS) Methods for 3D Dam-Break Flows

Photo from academic.microsoft.com

Lagrangian particle-based methods have opened new perspectives for the investigation of complex problems with large free-surface deformation. Some well-known particle-based methods adopted to solve non-linear hydrodynamics problems are the smoothed… Click to show full abstract

Lagrangian particle-based methods have opened new perspectives for the investigation of complex problems with large free-surface deformation. Some well-known particle-based methods adopted to solve non-linear hydrodynamics problems are the smoothed parti- cle hydrodynamics (SPH) and the moving particle semi-implicit (MPS). Both methods model the continuum by a system of Lagrangian particles (points), but adopting distinct approaches for the numerical operators, pressure calculation, and boundary conditions. Despite the ability of the particle-based methods in modeling highly nonlinear hydrodynamics, some shortcomings, such as unstable pressure computation and high computational cost remain. In order to assess the performance of these two methods, the weakly-compressible SPH (WCSPH) parallel solver, DualSPHysics, and an in-house incompressible MPS solver are adopted in this work. Two test cases consisting of three-dimensional (3D) dam-break problems are simulated, and wave heights, pressures and forces are compared with the available experimental data. The influence of the artificial viscosity on the accuracy of WCSPH is investigated. Computational times of both solvers are also compared. Finally, the relative benefits of the methods for solving free-surface problems are discussed, therefore providing directions of their applicability.

Keywords: particle semi; hydrodynamics; moving particle; particle; implicit mps; semi implicit

Journal Title: International Journal of Computational Methods
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.