LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A free energy Lagrangian variational formulation of the Navier–Stokes–Fourier system

Photo from wikipedia

We present a variational formulation for the Navier–Stokes–Fourier system based on a free energy Lagrangian. This formulation is a systematic infinite-dimensional extension of the variational approach to the thermodynamics of… Click to show full abstract

We present a variational formulation for the Navier–Stokes–Fourier system based on a free energy Lagrangian. This formulation is a systematic infinite-dimensional extension of the variational approach to the thermodynamics of discrete systems using the free energy, which complements the Lagrangian variational formulation using the internal energy developed in [F. Gay-Balmaz and H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics, Part II: Continuum systems, J. Geom. Phys. 111 (2017) 194–212] as one employs temperature, rather than entropy, as an independent variable. The variational derivation is first expressed in the material (or Lagrangian) representation, from which the spatial (or Eulerian) representation is deduced. The variational framework is intrinsically written in a differential-geometric form that allows the treatment of the Navier–Stokes–Fourier system on Riemannian manifolds.

Keywords: formulation; fourier system; stokes fourier; navier stokes; energy; variational formulation

Journal Title: International Journal of Geometric Methods in Modern Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.