LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclic-parallel Ricci tensors on a class of almost Kenmotsu 3-manifolds

Photo by ryoji__iwata from unsplash

In this paper, we give a local characterization for the Ricci tensor of an almost Kenmotsu [Formula: see text]-manifold [Formula: see text] to be cyclic-parallel. As an application, we prove… Click to show full abstract

In this paper, we give a local characterization for the Ricci tensor of an almost Kenmotsu [Formula: see text]-manifold [Formula: see text] to be cyclic-parallel. As an application, we prove that if [Formula: see text] has cyclic-parallel Ricci tensor and satisfies [Formula: see text], (where [Formula: see text] is the Lie derivative of [Formula: see text] along the Reeb flow and both [Formula: see text] and [Formula: see text] are smooth functions such that [Formula: see text] is invariant along the contact distribution), then [Formula: see text] is locally isometric to either the hyperbolic space [Formula: see text] or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.

Keywords: ricci; cyclic parallel; almost kenmotsu; formula see; see text

Journal Title: International Journal of Geometric Methods in Modern Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.