LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamical systems: Approximate Lagrangians and Noether symmetries

Photo from wikipedia

We determine the approximate Noether point symmetries of the variational principle characterizing second-order equations of motion of a particle in a (finite-dimensional) Riemannian manifold. In particular, the Lagrangian comprises of… Click to show full abstract

We determine the approximate Noether point symmetries of the variational principle characterizing second-order equations of motion of a particle in a (finite-dimensional) Riemannian manifold. In particular, the Lagrangian comprises of kinetic energy and a potential [Formula: see text], perturbed to [Formula: see text]. We establish a convenient system of approximate geometric conditions that suffices for the computation of approximate Noether symmetry vectors and moreover, simplifies the problem of the effect of higher orders of the perturbation. The general results are applied to several practical problems of interest and we find extra Noether symmetries at [Formula: see text].

Keywords: approximate lagrangians; noether symmetries; dynamical systems; formula see; see text; systems approximate

Journal Title: International Journal of Geometric Methods in Modern Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.