LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Automorphism Group of Green Algebra of 9-Dimensional Taft Hopf Algebra

Photo by papaioannou_kostas from unsplash

Let H3 be the 9-dimensional Taft Hopf algebra, let [Formula: see text] be the corresponding Green ring of H3, and let [Formula: see text] be the automorphism group of Green… Click to show full abstract

Let H3 be the 9-dimensional Taft Hopf algebra, let [Formula: see text] be the corresponding Green ring of H3, and let [Formula: see text] be the automorphism group of Green algebra [Formula: see text] over the real number field ℝ. We prove that the quotient group [Formula: see text] is isomorphic to the direct product of the dihedral group of order 12 and the cyclic group of order 2, where T1 is the isomorphism class which contains the identity map and is isomorphic to a group [Formula: see text] with multiplication given by [Formula: see text].

Keywords: taft hopf; group; hopf algebra; see text; formula see; dimensional taft

Journal Title: Algebra Colloquium
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.