Combination therapies for the treatment of cancer have attracted wide attention. The poor selectivity and biocompatibility of photosensitizers (PS) limit the use of combination therapies in chemotherapy and photodynamic therapy… Click to show full abstract
Combination therapies for the treatment of cancer have attracted wide attention. The poor selectivity and biocompatibility of photosensitizers (PS) limit the use of combination therapies in chemotherapy and photodynamic therapy (PDT) for cancer. In this work, the Gender PS (mPEG-[Formula: see text]-PLA-S-S-ZnPC), asymmetric zinc(II) phthalocyanine (ZnPC) and mono-methoxy oxygen-based polyethylene glycol-polylactic acid (mPEG-b-PLA) were designed and synthesized for PDT through disulfide bond (-S-S-). The amphipathic PS could be self-assembled into a micelle in aqueous solution, and paclitaxel (PTX) was encapsulated in the core of the micelle for chemotherapy (PTX/mPEG-[Formula: see text]-PLA-S-S-ZnPc). The PTX/mPEG-[Formula: see text]-PLA-S-S-ZnPc micelle was spherical with a uniform diameter of about 184 nm. At the first 48 h, the release behaviors of ZnPC and PTX at 10 mmol / L GSH were 30% and 75.2%, respectively. These results suggested that GSH-responsive PTX/mPEG-[Formula: see text]-PLA-S-S-ZnPc micelle was an active ingredient in combination therapies for cancer.
               
Click one of the above tabs to view related content.