LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Hybrid Variational Multiscale Element-Free Galerkin Method for Convection-Diffusion Problems

Photo by sebastiaanstam from unsplash

By coupling the dimension splitting method (DSM) and the variational multiscale element-free Galerkin (VMEFG) method, a hybrid variational multiscale element-free Galerkin (HVMEFG) method is developed for the two-dimensional convection-diffusion problems.… Click to show full abstract

By coupling the dimension splitting method (DSM) and the variational multiscale element-free Galerkin (VMEFG) method, a hybrid variational multiscale element-free Galerkin (HVMEFG) method is developed for the two-dimensional convection-diffusion problems. In the HVMEFG method, the two-dimensional problem is converted into a battery of one-dimensional problems by the DSM. Combining the non-singular improved interpolating moving least-squares (IIMLS) method, the VMEFG method is used to obtain the discrete equations of the one-dimensional problems on the splitting plane. Then, final discretized equations of the entire convection-diffusion problems are assembled by the IIMLS method. The HVMEFG method has high accuracy and efficiency. Numerical examples show that the HVMEFG method can obtain non-oscillating solutions and has higher efficiency and accuracy than the EFG and VMEFG methods for convection-diffusion problems.

Keywords: convection diffusion; diffusion problems; variational multiscale; method

Journal Title: International Journal of Applied Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.