Let [Formula: see text] be a positive integer with [Formula: see text], and let [Formula: see text] be an odd prime. In this paper, by using certain properties of Pell’s… Click to show full abstract
Let [Formula: see text] be a positive integer with [Formula: see text], and let [Formula: see text] be an odd prime. In this paper, by using certain properties of Pell’s equations and quartic diophantine equations with some elementary methods, we prove that the system of equations [Formula: see text] [Formula: see text] and [Formula: see text] has positive integer solutions [Formula: see text] if and only if [Formula: see text] and [Formula: see text] satisfy [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are positive integers. Further, if the above condition is satisfied, then [Formula: see text] has only the positive integer solution [Formula: see text]. By the above result, we can obtain the following corollaries immediately. (i) If [Formula: see text] or [Formula: see text], then [Formula: see text] has no positive integer solutions [Formula: see text]. (ii) For [Formula: see text], [Formula: see text] has only the positive integer solutions [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].
               
Click one of the above tabs to view related content.