Let [Formula: see text] be an integer, [Formula: see text] denote a Dirichlet character modulo [Formula: see text], for any real number [Formula: see text], we define the generalized Dirichlet… Click to show full abstract
Let [Formula: see text] be an integer, [Formula: see text] denote a Dirichlet character modulo [Formula: see text], for any real number [Formula: see text], we define the generalized Dirichlet [Formula: see text]-functions [Formula: see text] where [Formula: see text] with [Formula: see text] and [Formula: see text] both real. It can be extended to all [Formula: see text] by analytic continuation. In this paper, we study the mean value properties of the generalized Dirichlet [Formula: see text]-functions, and obtain several sharp asymptotic formulae by using analytic method.
               
Click one of the above tabs to view related content.