LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On asymptotic properties of the generalized Dirichlet L-functions

Photo by maxchen2k from unsplash

Let [Formula: see text] be an integer, [Formula: see text] denote a Dirichlet character modulo [Formula: see text], for any real number [Formula: see text], we define the generalized Dirichlet… Click to show full abstract

Let [Formula: see text] be an integer, [Formula: see text] denote a Dirichlet character modulo [Formula: see text], for any real number [Formula: see text], we define the generalized Dirichlet [Formula: see text]-functions [Formula: see text] where [Formula: see text] with [Formula: see text] and [Formula: see text] both real. It can be extended to all [Formula: see text] by analytic continuation. In this paper, we study the mean value properties of the generalized Dirichlet [Formula: see text]-functions, and obtain several sharp asymptotic formulae by using analytic method.

Keywords: properties generalized; generalized dirichlet; see text; formula see

Journal Title: International Journal of Number Theory
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.