In this paper, we formulate the Drinfeld module analogue of a question raised by Lang and studied by Katz on the existence of rational points on abelian varieties over number… Click to show full abstract
In this paper, we formulate the Drinfeld module analogue of a question raised by Lang and studied by Katz on the existence of rational points on abelian varieties over number fields. Given a maximal ideal [Formula: see text] of [Formula: see text], the question essentially asks whether, up to isogeny, a Drinfeld module [Formula: see text] over [Formula: see text] contains a rational [Formula: see text]-torsion point if the reduction of [Formula: see text] at almost all primes of [Formula: see text] contains a rational [Formula: see text]-torsion point. Similar to the case of abelian varieties, we show that the answer is positive if the rank of the Drinfeld module is 2, but negative if the rank is 3. Moreover, for rank 3 Drinfeld modules we classify those cases where the answer is positive.
               
Click one of the above tabs to view related content.