LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic Functionalization of Mesoporous Silica Spheres as a Nanovehicle for DOX pH-Triggered Delivery

Photo by itfeelslikefilm from unsplash

Mesoporous silica (MS) spheres of different sizes with pH-responsive characteristics were synthesized based on Stöber’s theory. Organic functionalization with aminopropyl and carboxyl groups resulted in different materials, namely, MS@NH2@COOH. MS@NH2@COOH… Click to show full abstract

Mesoporous silica (MS) spheres of different sizes with pH-responsive characteristics were synthesized based on Stöber’s theory. Organic functionalization with aminopropyl and carboxyl groups resulted in different materials, namely, MS@NH2@COOH. MS@NH2@COOH were observed to have a large number of carboxyl groups and multiamine chains, and were grafted into pore channels and pore outlets through systematic characterization analyses. All modified samples demonstrated the controlling of the delivery rate of DOX from the siliceous matrix. We also compared the drug release behavior of the DOX-loaded materials at high pH (7.4) and low pH (5.5) and studied the cytotoxicity on A549 cells. The experimental results indicated that the drug delivery system can better control drug release and have potential applications in the drug delivery field.

Keywords: delivery; organic functionalization; mesoporous silica; silica spheres

Journal Title: Nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.