In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete. However, in the real world, it is often the case that diffusion… Click to show full abstract
In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete. However, in the real world, it is often the case that diffusion occurs at certain moment every year, impulsive diffusion can provide a more suitable manner to model the actual dispersal (or migration) behaviors for many ecological species. In addition, it is generally recognized that some kinds of time delays are inevitable in population interactions. In view of these facts, a delayed predator–prey system with impulsive diffusion between two patches is proposed. By using comparison theorem of impulsive differential equation and some analysis techniques, criteria on the global attractivity of predator-extinction periodic solution are established, sufficient conditions for the permanence of system are obtained. Finally, numerical simulations are presented to illustrate our theoretical results.
               
Click one of the above tabs to view related content.