In this paper, a new approach and methodology is developed by incorporating differential quadrature technique with Bernstein polynomials. In differential quadrature method, approximations are done in a way that the… Click to show full abstract
In this paper, a new approach and methodology is developed by incorporating differential quadrature technique with Bernstein polynomials. In differential quadrature method, approximations are done in a way that the derivatives of the function are replaced by a linear sum of functional values at the grid points of the given domain. In Bernstein differential quadrature method (BDQM), Bernstein polynomials are employed for spatial discretization so that a system of ordinary differential equations (ODE’s) is obtained which is solved by SSPRK-43 method. The stability of the method is also studied. The accuracy of the present method is checked by performing numerical experiments on two-dimensional coupled Burgers’ and Brusselator systems and fourth-order extended Fisher Kolmogorov (EFK) equation. Implementation of the method is very easy, efficient and capable of reducing the size of computational efforts.
               
Click one of the above tabs to view related content.