Based on a state feedback controller, a new 6D hyperchaotic system with real variables and a self-excited attractor is constructed. The dynamic behavior of the new system is investigated in… Click to show full abstract
Based on a state feedback controller, a new 6D hyperchaotic system with real variables and a self-excited attractor is constructed. The dynamic behavior of the new system is investigated in terms of Lyapunov exponents, equilibrium points, and stability. Moreover, chaos synchronization implementation is also presented. A nonlinear control scheme was proposed to find the stability of error dynamics, which reduced the computational complexity of the synchronization algorithm. In comparison to the existing synchronization approaches, the controller in this paper was designed based on the analytical technique (linearization method), which does not require an auxiliary function (Lyapunov function) as in traditional methods. Numerical simulations were carried out by using MATLAB to validate the effectiveness of the analytical technique.
               
Click one of the above tabs to view related content.