LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solving the multi-objective stochastic interval-valued linear fractional integer programming problem

Photo by theblowup from unsplash

In this paper, we consider a Multi-Objective Stochastic Interval-Valued Linear Fractional Integer Programming problem (MOSIVLFIP). We especially deal with a multi-objective stochastic fractional problem involving an inequality type of constraints,… Click to show full abstract

In this paper, we consider a Multi-Objective Stochastic Interval-Valued Linear Fractional Integer Programming problem (MOSIVLFIP). We especially deal with a multi-objective stochastic fractional problem involving an inequality type of constraints, where all quantities on the right side are log-normal random variables, and the objective functions coefficients are fractional intervals. The proposed solving procedure is divided in three steps. In the first one, the probabilistic constraints are converted into deterministic ones by using the chance constrained programming technique. Then, the second step consists of transforming the studied problem objectives on an optimization problem with an interval-valued objective functions. Finally, by introducing the concept of weighted sum method, the equivalent converted problem obtained from the two first steps is transformed into a single objective deterministic fractional problem. The effectiveness of the proposed procedure is illustrated through a numerical example.

Keywords: objective stochastic; problem; interval valued; multi objective; stochastic interval

Journal Title: Asian-european Journal of Mathematics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.