LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Charting the Sociotechnical Gap in Explainable AI: A Framework to Address the Gap in XAI

Photo by einstein29 from unsplash

Explainable AI (XAI) systems are sociotechnical in nature; thus, they are subject to the sociotechnical gap-divide between the technical affordances and the social needs. However, charting this gap is challenging.… Click to show full abstract

Explainable AI (XAI) systems are sociotechnical in nature; thus, they are subject to the sociotechnical gap-divide between the technical affordances and the social needs. However, charting this gap is challenging. In the context of XAI, we argue that charting the gap improves our problem understanding, which can reflexively provide actionable insights to improve explainability. Utilizing two case studies in distinct domains, we empirically derive a framework that facilitates systematic charting of the sociotechnical gap by connecting AI guidelines in the context of XAI and elucidating how to use them to address the gap. We apply the framework to a third case in a new domain, showcasing its affordances. Finally, we discuss conceptual implications of the framework, share practical considerations in its operationalization, and offer guidance on transferring it to new contexts. By making conceptual and practical contributions to understanding the sociotechnical gap in XAI, the framework expands the XAI design space.

Keywords: xai; charting sociotechnical; address gap; framework; gap; sociotechnical gap

Journal Title: Proceedings of the ACM on Human-Computer Interaction
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.