LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense.

Photo from wikipedia

Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in… Click to show full abstract

Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Keywords: signaling phage; virology; nucleotide signaling; defense; phage defense; cyclic nucleotide

Journal Title: Annual review of virology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.