LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spike-Gamma Phase Relationship in the Visual Cortex.

Photo from wikipedia

Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to… Click to show full abstract

Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to modulation of spike timing relative to the rhythm. I first show that the gamma band could be more privileged than other frequencies in observing spike-field interactions even in the absence of genuine gamma rhythmicity and discuss several biases in spike-gamma phase estimation. I then discuss the expected spike-gamma phase according to several hypotheses. Inconsistent with the phase-coding hypothesis (but not with others), the spike-gamma phase does not change with changes in stimulus intensity or attentional state, with spikes preferentially occurring 2-4 ms before the trough, but with substantial variability. However, this phase relationship is expected even when gamma is a byproduct of excitatory-inhibitory interactions. Given that gamma occurs in short bursts, I argue that the debate over the role of gamma is a matter of semantics. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Keywords: spike gamma; gamma phase; gamma; phase relationship; phase

Journal Title: Annual review of vision science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.