LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Exsolved Nanoparticles on La0.5Sr1.5Fe1.5Mo0.5O6-δ Anode Enhance the Hydrogen Oxidation Reaction in SOFCs

uIn situ exsolution of nanoparticles is widely considered as an efficient and cost-effective method for increasing the number of active sites and consequently the catalytic activity on ceramic anodes in… Click to show full abstract

uIn situ exsolution of nanoparticles is widely considered as an efficient and cost-effective method for increasing the number of active sites and consequently the catalytic activity on ceramic anodes in solid oxide fuel cells (SOFCs). In this study, by doping on the A-site of Sr2Fe1.5Mo0.5O6-delta (SF1.5 M), evenly distributed Fe nanoparticles (similar to 100 nm) were exsolved on the La0.5Sr1.5Fe1.5Mo0.5O6- delta (LSFM) surface under a typical anode operating environment (humidified H-2, 800 degrees C). In addition, the exsolution-dissolution reversibility of the exsolved Fe nanoparticles was observed during a redox cycle. Electrical conductivity relaxation (ECR) analysis demonstrated that the surface reaction kinetics on the LSFM anode is enhanced by in situ exsolution. Based on electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) analysis, the perovskite structure was not damaged by the exsolution or the surface phase transition. During exsolution, the ionic conductivity increased. The higher surface catalytic activity and faster oxygen transportation led to enhanced electrochemical performance.

Keywords: la0 5sr1; exsolution; 5fe1 5mo0; situ; 5sr1 5fe1; 5mo0 5o6

Journal Title: Journal of The Electrochemical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.