LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuous Purification of Molten Chloride Salt: Electrochemical Behavior of MgOHCl Reduction

Photo by ldxcreative from unsplash

We present a study on the electrochemical behavior of magnesium hydroxide (MgOH+) reduction on a tungsten (W) cathode in molten chloride salt (MgCl2-KCl-NaCl) across the temperature range of 475-525℃. MgOH+,… Click to show full abstract

We present a study on the electrochemical behavior of magnesium hydroxide (MgOH+) reduction on a tungsten (W) cathode in molten chloride salt (MgCl2-KCl-NaCl) across the temperature range of 475-525℃. MgOH+, which forms within the salt upon exposure to moisture, is a leading cause of corrosion. Corrosion is a major barrier to deployment of chloride salts across a number of applications, including concentrating solar power plants and nuclear power plants. While pre-purification protocols have been developed to ensure MgOH+ is removed from molten chloride salts prior to deployment, MgOH+ forms in-situ during operation of chloride-salt based plants. Thus, methods for continuous purification during plant operation are needed. Continuous electrochemical purification via electrolysis using a Mg anode and W cathode has been proposed, but little has been done to assess scalability. Here, we assess fundamental properties of electrochemical removal of MgOH+ to enable future scale up of this method.

Keywords: purification; chloride salt; electrochemical behavior; continuous purification; mgoh; molten chloride

Journal Title: Journal of The Electrochemical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.