LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring the Limits of Bottom-Up Gold Filling to Fabricate Diffraction Gratings.

Photo from wikipedia

Gold deposition on rotating disk electrodes, Bi3+ adsorption on planar Au films and superconformal Au filling of trenches up to 45 μm deep are examined in Bi3+-containing Na3Au(SO3)2 electrolytes with… Click to show full abstract

Gold deposition on rotating disk electrodes, Bi3+ adsorption on planar Au films and superconformal Au filling of trenches up to 45 μm deep are examined in Bi3+-containing Na3Au(SO3)2 electrolytes with pH between 9.5 and 11.5. Higher pH is found to increase the potential-dependent rate of Bi3+ adsorption on planar Au surfaces, shortening the incubation period that precedes active Au deposition on planar surfaces and bottom-up filling in patterned features. Decreased contact angles between the Au seeded sidewalls and bottom-up growth front also suggest improved wetting. The bottom-up filling dynamic in trenches is, however, lost at pH 11.5. The impact of Au concentration, 80 mmol/L versus 160 mmol/L Na3Au(SO3)2, on bottom-up filling is examined in trenches up to ≈ 210 μm deep with aspect ratio of depth/width ≈ 30. The microstructures of void-free, bottom-up filled trench arrays used as X-ray diffraction gratings are characterized by scanning electron microscopy (SEM) and Electron Backscatter Diffraction (EBSD), revealing marked spatial variation of the grain size and orientation within the filled features.

Keywords: bottom filling; diffraction gratings; diffraction; exploring limits; gold; limits bottom

Journal Title: Journal of the Electrochemical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.