LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving Performance of GaAs-Based Vertical-Cavity Surface-Emitting Lasers by Employing Thermally Conductive Metal Substrate

Photo from wikipedia

We investigated the effect of the conducting substrate on the performance of GaAs-based VCSELs, where the substrates were 230 μm-GaAs (reference), 10 μm-GaAs/metal, and 0.5 μm-GaAs/metal. The VCSELs with the… Click to show full abstract

We investigated the effect of the conducting substrate on the performance of GaAs-based VCSELs, where the substrates were 230 μm-GaAs (reference), 10 μm-GaAs/metal, and 0.5 μm-GaAs/metal. The VCSELs with the 10 μm- and 0.5 μm thick GaAs/metal-substrates produced higher light output power than the reference. For example, the thin GaAs/metal substrate samples showed 16.3%–16.7% higher light output power at 3.0 A than the reference. It was shown that the thin GaAs samples produced 12.2%–14.0% higher power conversion efficiency at 3.0 A than the reference. At a high current region, the metal-substrate samples yielded lower junction temperature than the reference, namely, the thin GaAs samples gave 42 °C–47.4 °C lower junction temperature at 2.0 A than the reference. Further, the thin GaAs samples revealed better light output degradation characteristics than the reference. For instance, the light output of the reference was degraded by 30.2% at 85 °C, whereas the thin GaAs samples were degraded by 20.1%–20.5%. Near-field images and emission profiles demonstrated that the metal-substrate samples suffered from no damage incurred during the VCSEL fabrication process.

Keywords: reference; thin gaas; metal substrate; gaas

Journal Title: ECS Journal of Solid State Science and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.