LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aerobic conditioning alters the satellite cell and ribosome response to acute eccentric contractions in young men and women

Photo by mehdizadeh from unsplash

Satellite cells (SC) and ribosomes are key determinants of the skeletal muscle adaptive response. Both are thought to increase acutely after resistance exercise and chronically with resistance training. However, the… Click to show full abstract

Satellite cells (SC) and ribosomes are key determinants of the skeletal muscle adaptive response. Both are thought to increase acutely after resistance exercise and chronically with resistance training. However, the acute SC and ribosome exercise response with prior aerobic conditioning is unknown. Fourteen young men and women underwent 6 weeks of single-legged aerobic conditioning followed by an acute bout of 300 eccentric contractions. Muscle biopsies were taken from the vastus lateralis of the aerobically conditioned (AC) and the control (CTL) legs before (Pre), 24 (24h) and 48 (48h) hours post-contractions. SC pool expansion (PAX7+ cells/100 fibres) was greater in type-I (1.3-fold) and mixed-fibres (1.2-fold) in the AC leg compared to the CTL. Pax7 (1.2-fold) and MyoD1 (1.4-fold) mRNA expression was also greater in the AC leg compared to the CTL. AC had greater RNA concentration (1.2-fold) and mRNA expression of Ubf (1.2-fold) and Tif-1a (1.3-fold) compared to CTL. Only the AC leg increased (Pre-48h) c-Myc (3.0-fold), (Pre-24h) 45S pre-rRNA (2.6-fold), 5.8S ITS (2.1-fold) and 28S ITS (2.0-fold) following eccentric contractions. We discovered that aerobic conditioning augmented type-I SC pool expansion and ribosome content following an acute bout of eccentric contractions.

Keywords: eccentric contractions; men women; young men; physiology; aerobic conditioning; response

Journal Title: American Journal of Physiology - Cell Physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.