LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomarkers of alveolar epithelial injury and endothelial dysfunction are associated with scores of pulmonary edema in invasively ventilated patients

Photo from wikipedia

BACKGROUND Pulmonary edema is a central hallmark of Acute Respiratory Distress Syndrome (ARDS). Endothelial dysfunction and epithelial injury contribute to permeability but their differential contribution to pulmonary edema development remains… Click to show full abstract

BACKGROUND Pulmonary edema is a central hallmark of Acute Respiratory Distress Syndrome (ARDS). Endothelial dysfunction and epithelial injury contribute to permeability but their differential contribution to pulmonary edema development remains understudied. METHODS Plasma levels of surfactant protein-D (SP-D), soluble receptor for advanced glycation end products (sRAGE) and angiopoietin-2 (Ang-2) were measured in a prospective, multicenter cohort of invasively ventilated patients. Pulmonary edema was quantified using the radiographic assessment of lung edema (RALE) and global lung ultrasound (LUS) score. Variables were collected within 48 hours after intubation. Linear regression was used to examine the association of the biomarkers with pulmonary edema. RESULTS In 362 patients, higher SP-D, sRAGE and Ang-2 concentrations were significantly associated with higher RALE and global LUS scores. After stratification by ARDS subgroups (pulmonary, non-pulmonary, COVID, non-COVID), the positive association of SP-D levels with pulmonary edema remained, while sRAGE and Ang-2 showed less consistent associations throughout the subgroups. In a multivariable analysis, SP-D levels were most strongly associated with pulmonary edema when combined with sRAGE (RALE score: βSP-D = 6.79 units/log10 pg/mL, βsRAGE = 3.84 units/log10 pg/mL, R2 = 0.23; global LUS score: βSP-D = 3.28 units/log10 pg/mL, βsRAGE = 2.06 units/log10 pg/mL, R2 = 0.086), while Ang-2 did not further improve the model. CONCLUSION Biomarkers of epithelial injury and endothelial dysfunction were associated with pulmonary edema in invasively ventilated patients. SP-D and sRAGE showed the strongest association, suggesting that epithelial injury may form a final common pathway in the alveolar-capillary barrier dysfunction underlying pulmonary edema.

Keywords: epithelial injury; physiology; endothelial dysfunction; pulmonary edema

Journal Title: American Journal of Physiology - Lung Cellular and Molecular Physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.