LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exogenous ketosis suppresses diuresis and atrial natriuretic peptide during exercise.

Photo by hassaanhre from unsplash

We have previously demonstrated that exogenous ketosis reduces urine production during exercise. However, the underlying physiological mechanism of this anti-diuretic effect remained unclear. Therefore, we investigated whether acute exogenous ketosis… Click to show full abstract

We have previously demonstrated that exogenous ketosis reduces urine production during exercise. However, the underlying physiological mechanism of this anti-diuretic effect remained unclear. Therefore, we investigated whether acute exogenous ketosis by oral ingestion of ketone ester (KE) during a simulated cycling race (RACE) affects the hormonal pathways implicated in fluid balance regulation during exercise. In a double-blind crossover design, 11 well-trained male cyclists participated in RACE consisting of a 3-h submaximal intermittent cycling (IMT180') bout followed by a 15-minute time trial (TT15') in an environmental chamber set at 28 °C and 60 % relative humidity. Fluid intake was adjusted to maintain euhydration. Before and during RACE, the subjects received either a control drink (CON) or the ketone ester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE), which elevated blood β-hydroxybutyrate to ~2-4 mM. Urine output during IMT180' was ~20% lower in KE (1172 ± 557 ml) than in CON (1431 ± 548 ml, p < 0.05). Compared with CON, N-terminal pro-atrial natriuretic peptide (NT-pro ANP) concentration during RACE was ~20% lower in KE (p < 0.05). KE also raised plasma noradrenaline concentrations during RACE. Performance in TT15' was similar between CON and KE. In conclusion, exogenous ketosis suppresses diuresis and downregulates α-natriuretic peptide activity during exercise.

Keywords: exogenous ketosis; natriuretic peptide; ketosis; race; exercise

Journal Title: Journal of applied physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.