LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional optical coherence tomography at altitude: retinal microvascular perfusion and retinal thickness at 3,800 meters

Photo from wikipedia

Cerebral hypoxia is a serious consequence of several cardiorespiratory illnesses. Measuring the retinal microvasculature at high altitude provides a surrogate for cerebral microvasculature, offering potential insight into cerebral hypoxia in… Click to show full abstract

Cerebral hypoxia is a serious consequence of several cardiorespiratory illnesses. Measuring the retinal microvasculature at high altitude provides a surrogate for cerebral microvasculature, offering potential insight into cerebral hypoxia in critical illness. Additionally, while sex-specific differences in cardiovascular diseases are strongly supported, few have focused on differences in ocular blood flow. We evaluated the retinal microvasculature in males (n=11) and females (n=7) using functional optical coherence tomography at baseline (1,130m) (Day 0), following rapid ascent (Day 2) and prolonged exposure (Day 9) to high altitude (3,800m). Retinal vascular perfusion density (rVPD; an index of total blood supply), retinal thickness (RT; reflecting vascular and neural tissue volume) and arterial blood were acquired. As a group, rVPD increased on Day 2 vs. Day 0 (p<0.001) and was inversely related to PaO2 (R2=0.45; p=0.006). By Day 9, rVPD recovered to baseline, but was significantly lower in males vs. females (p=0.007). RT was not different on Day 2 vs. Day 0 (p>0.99) but was reduced by Day 9 relative to Day 0 and Day 2 (p<0.001). RT changes relative to Day 0 were inversely related to changes in PaO2 on Day 2 (R2=0.6; p=0.001) and Day 9 (R2=0.4; p=0.02). RT did not differ between sexes. These data suggest differential time course and regulation of the retina during rapid ascent and prolonged exposure to high altitude and are the first to demonstrate sex-specific differences in rVPD at high altitude. The ability to assess intact microvasculature contiguous with the brain has widespread research and clinical applications.

Keywords: day; optical coherence; functional optical; high altitude; retinal thickness; coherence tomography

Journal Title: Journal of Applied Physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.