LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficacy and toxicity of the DPCPX nanoconjugate drug study for the treatment of spinal cord injury in rats.

Effects of the Adenosine A1 blockade using 8-cyclopentyl-1,3-diprophyxanthine (DPCPX) nanoconjugate on inducing recovery of the hemidiaphragm paralyzed by hemisection have been thoroughly examined previously; however, the toxicology of DPCPX nanoconjugate… Click to show full abstract

Effects of the Adenosine A1 blockade using 8-cyclopentyl-1,3-diprophyxanthine (DPCPX) nanoconjugate on inducing recovery of the hemidiaphragm paralyzed by hemisection have been thoroughly examined previously; however, the toxicology of DPCPX nanoconjugate remains unknown. This research study investigates the therapeutic efficacy and toxicology of the nanoconjugate DPCPX in the cervical spinal cord injury (SCI) rat model. We hypothesized that a single injection of nanoconjugate DPCPX in the paralyzed left hemidiaphragm (LDH) of hemisected rats at the 2nd cervical segment (C2Hx) would lead to the long-term recovery of LDH while showing minimal toxicity. Adult male rats underwent left C2Hx surgery and the diaphragms' baseline electromyography (EMG). Subsequently, rats were randomized into a control group, and four treated subgroups. Three subgroups received a single intradiaphragmatic dose of either 0.09, 0.15, 0.27 µg/kg, and one subgroup received 0.1 mg/kg of native DPCPX 2 times/day intravenous (i.v.) for 3 days (total 0.6 mg/kg). Rats were monitored for a total of 56 days. Compared to control, the treatment with nanoconjugate DPCPX at 0.09 µg/kg, 0.15 µg/kg, and 0.27 µg/kg doses elicited significant recovery of paralyzed LDH (i.e., 67% recovery at eight weeks) (p<0.05). DPCPX nanoconjugate treated rats had significant weight loss first two weeks but recovered significantly by day 56 (p<0.05). The levels of gold in the blood and body tissues were below the recommended levels. No sign of weakness, histology of tissue damage, or organ abnormality was observed. A single dose of DPCPX nanoconjugate can induce long-term diaphragm recovery after SCI without observed toxicity.

Keywords: toxicology; toxicity; dpcpx nanoconjugate; spinal cord; dpcpx; recovery

Journal Title: Journal of applied physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.