LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulation of Regional Cerebral Blood Flow During Graded Reflex-Mediated Sympathetic Activation via Lower Body Negative Pressure.

Photo from wikipedia

The role of the sympathetic nervous system in cerebral blood flow (CBF) regulation remains unclear. Previous studies have primarily measured middle cerebral artery blood velocity to assess CBF. Recently, there… Click to show full abstract

The role of the sympathetic nervous system in cerebral blood flow (CBF) regulation remains unclear. Previous studies have primarily measured middle cerebral artery blood velocity to assess CBF. Recently, there has been a transition towards measuring internal carotid artery (ICA) and vertebral artery (VA) blood flow using duplex Doppler ultrasound. Given that the VA supplies autonomic control centers in the brainstem, we hypothesized that graded sympathetic activation via lower body negative pressure (LBNP) would reduce ICA but not VA blood flow. ICA and VA blood flow were measured during two protocols: Protocol-1, low-to-moderate LBNP (-10, -20, -30, -40 Torr) and Protocol-2, moderate-to-high LBNP (-30, -50, -70 Torr). ICA and VA blood flow, diameter, and blood velocity were unaffected up to -40 LBNP. However, -50 and -70 LBNP evoked reductions in ICA and VA blood flow (e.g., -70 LBNP: %∆VA-baseline= -27.6±3.0) that were mediated by decreases in both diameter and velocity (e.g., -70 LBNP: %∆VA-baseline diameter= -7.5±1.9 and %∆VA-baseline velocity= -13.6±1.7), which were comparable between vessels. Since hyperventilation during -70 LBNP reduced PETCO2, this decrease in PETCO2 was matched via voluntary hyperventilation. Reductions in ICA and VA blood flow during hyperventilation alone were significantly smaller than during -70 LBNP and were primarily mediated by decreases in velocity (%∆VA-baseline velocity= -8.6±2.4; %∆VA-baseline diameter= -0.05±0.56). These data demonstrate that both ICA and VA were unaffected by low-to-moderate sympathetic activation, whereas robust reflex-mediated sympatho-excitation caused similar magnitudes of vasoconstriction in both arteries. Thus, contrary to our hypothesis, the ICA was not preferentially vasoconstricted by sympathetic activation.

Keywords: blood flow; sympathetic activation; velocity; blood

Journal Title: Journal of applied physiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.