LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exercise induces muscle fiber type switching via transient receptor potential melastatin 2-dependent Ca2+ signaling.

The aim of the present study was to examine whether transient receptor potential melastatin 2 (TRPM2) plays a role in muscle fiber-type transition during exercise. Mice were trained at a… Click to show full abstract

The aim of the present study was to examine whether transient receptor potential melastatin 2 (TRPM2) plays a role in muscle fiber-type transition during exercise. Mice were trained at a speed of 12 m/min at a slope of 0° for 60 min for 5 consecutive days/wk for 4 wk. Exhaustion tests were performed on the treadmill (the speed was set at 6 m/min at a slope of 0° and increased at a rate of 1 m/min every 6 min). Isolated primary skeletal muscle cells from TRPM2-knockout (KO) mice showed lower amplitudes of electrical stimuli (ES)-induced Ca2+ signals when compared with wild-type (WT) mice due to a defect in Ca2+ influx. Moreover, TRPM2-KO mice had a higher proportion of fast-twitch skeletal muscle fibers and a lower proportion of slow-twitch muscle fibers before exercise than WT mice. After exercise, the expression of slow-twitch skeletal muscle fibers was increased only in WT mice but not in TRPM2-KO mice. ES-induced nuclear translocation of the Ca2+-dependent transcription factor NFATc1 was significantly lower in TRPM2-KO mice than in WT mice. TRPM2-KO mice also showed decreased mitochondrial Ca2+ and membrane potential. Lactate levels were higher in the skeletal muscle cells of TRPM2-KO mice before and after ES compared with WT mice. Collectively, these data indicate that TRPM2-mediated Ca2+ signaling plays a critical role in the regulation of fiber-type switching and mitochondrial function in skeletal muscle. NEW & NOTEWORTHY TRPM2 has been shown to play an important role in a variety of cellular functions. However, the role of TRPM2 in skeletal muscle remains poorly understood. Here, we provide evidence that TRPM2-mediated Ca2+ signaling is required for training-induced improvement in skeletal muscle mitochondrial function and fiber type transition.

Keywords: skeletal muscle; muscle; trpm2; ca2; mice; fiber type

Journal Title: Journal of applied physiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.