LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Myofiber hypertrophy adaptations following 6-weeks of low load resistance training with blood flow restriction in untrained males and females.

Photo from wikipedia

The effects of low load resistance training with blood flow restriction (BFR) on hypertrophy of type I/II myofibers remains unclear, especially in females. The purpose of the present study is… Click to show full abstract

The effects of low load resistance training with blood flow restriction (BFR) on hypertrophy of type I/II myofibers remains unclear, especially in females. The purpose of the present study is to examine changes in type I/II myofiber cross-sectional area (fCSA) and muscle CSA (mCSA) of the vastus lateralis (VL) pre- to post-6 weeks of high load resistance training (HL, n=15, 8 females) and low load resistance training with BFR (n=16, 8 females). Mixed-effects models were used to analyze fCSA with group (HL, BFR), sex (M, F), fiber type (I, II), and time (Pre-, Post-) included as factors. mCSA increased pre- to post-training (p<0.001, d=0.91) and was greater in males compared to females (p<0.001, d=2.26). Type II fCSA increased pre- to post-HL (p<0.05, d=0.46) and was greater in males compared to females (p<0.05, d=0.78). There were no significant increases in fCSA pre- to post-BFR for either fiber type or sex. Cohen's d, however, revealed moderate effect sizes in type I and II fCSA for males (d=0.59 & 0.67), although this did not hold true for females (d=0.29 & 0.34). Conversely, the increase in type II fCSA was greater for females than males following HL. In conclusion, low load resistance training with BFR may not promote myofiber hypertrophy to the level of HL resistance training, and similar responses were generally observed for males and females. In contrast, comparable effect sizes for mCSA and 1RM between groups suggest that BFR could play a role in a resistance training program.

Keywords: load resistance; resistance; resistance training; low load

Journal Title: Journal of applied physiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.