LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Properties of Deiters' neurons and inhibitory synaptic transmission in the mouse lateral vestibular nucleus.

Photo from wikipedia

Deiters' neurons, located exclusively in the lateral vestibular nucleus (LVN), are involved in vestibulospinal reflexes, innervate extensor motoneurons that drive anti-gravity muscles, and receive inhibitory inputs from the cerebellum. We… Click to show full abstract

Deiters' neurons, located exclusively in the lateral vestibular nucleus (LVN), are involved in vestibulospinal reflexes, innervate extensor motoneurons that drive anti-gravity muscles, and receive inhibitory inputs from the cerebellum. We investigated intrinsic membrane properties, short-term plasticity, and inhibitory synaptic inputs of mouse Deiters' and non-Deiters' neurons within the LVN. Deiters' neurons are distinguished from non-Deiters' neurons by their very low input resistance (105.8 vs 521.8 MOhms) respectively, long axons that project as far as the ipsilateral lumbar spinal cord, and expression of the cytostructural protein, non-phosphorylated neurofilament protein (NPNFP). Whole-cell patch clamp recordings in brainstem slices show most Deiters' and non-Deiters' neurons were tonically active (>92%). Short-term plasticity was studied by examining discharge rate modulation following release from hyperpolarization (post-inhibitory rebound firing; PRF) and depolarization (firing rate adaptation; FRA). PRF and FRA gain were similar in Deiters' and non-Deiters' neurons (PRF: 24.9 vs. 20.2 Hz and FRA gain: 231.5 vs. 287.8 spikes/sec/nA respectively). Inhibitory synaptic input to both populations showed GABAergic rather than glycinergic inhibition dominated in Deiters' neurons and GABAA miniature inhibitory postsynaptic current (mIPSC) frequency was much higher in Deiters' neurons compared to non-Deiters' neurons (~15.9 vs. 1.4 Hz respectively). Our data suggest Deiters' neurons can be reliably identified by their intrinsic membrane and synaptic properties. They are tonically active, glutamatergic, have low sensitivity or 'gain', exhibit little adaptation, and receive strong GABAergic input. Together, these features suggest, since Deiters' neurons have minimal short-term plasticity they are well-suited to a role encoding tonic signals for the vestibulospinal reflex.

Keywords: non deiters; lateral vestibular; vestibular nucleus; inhibitory synaptic; deiters neurons

Journal Title: Journal of neurophysiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.