LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An examination of a potential organized motor unit firing rate and recruitment scheme of an antagonist muscle during isometric contractions.

Photo from wikipedia

The primary purpose of the present study is to determine if an organized control scheme exists for the antagonist muscle during steady isometric torque. A secondary focus is to better… Click to show full abstract

The primary purpose of the present study is to determine if an organized control scheme exists for the antagonist muscle during steady isometric torque. A secondary focus is to better understand how firing rates of the antagonist muscle changes from a moderate- to higher-contraction intensity. Fourteen subjects performed two submaximal isometric trapezoid muscle actions of the forearm flexors that included a linearly increasing, steady force at both 40% and 70% maximum voluntary contraction, and linearly decreasing segments. Surface electromyographic signals of the biceps and triceps brachii were collected and decomposed into constituent motor unit action potential trains. Motor unit firing rate vs. recruitment threshold, motor unit action potential amplitude vs. recruitment threshold, and motor unit firing rate vs. action potential amplitude relationships of the biceps brachii (agonist) and triceps brachii (antagonist) muscles were analyzed. Moderate- to-strong relationships (|r| ³ 0.69) were present for the agonist and antagonist muscles for each relationship with no differences between muscles (p = 0.716, 0.428, 0.182). The y-intercepts of the motor unit firing rate vs. recruitment threshold relationship of the antagonist did not increase from 40% to 70% maximal voluntary contractions (p = 0.96), unlike for the agonist (p = 0.009). The antagonist muscle exhibits a similar motor unit control scheme to the agonist. Unlike the agonist, however, the firing rates of the antagonist did not increase with increasing intensity. Future research should investigate how antagonist firing rates adapt to resistance training and changes in antagonist firing rates in the absence of peripheral feedback.

Keywords: antagonist muscle; motor unit; motor; unit firing

Journal Title: Journal of neurophysiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.