LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The dynamic shaping of local cortical circuitry by sex and age, and its relation to Pattern Comparison Processing Speed.

Photo from wikipedia

Previous resting-state functional magnetic resonance imaging (fMRI) studies have shown that the strength of local neural interactions decreases with distance. Here we extend that line of research to evaluate effects… Click to show full abstract

Previous resting-state functional magnetic resonance imaging (fMRI) studies have shown that the strength of local neural interactions decreases with distance. Here we extend that line of research to evaluate effects of sex and age on local cortical circuitry in 6 cortical areas (superior frontal, precentral, postcentral, superior parietal, inferior parietal, lateral occipital) using data acquired from 1,054 healthy young adults who participated in the Human Connectome Project. We confirmed previous findings that the strength of zero-lag correlations between prewhitened, resting-state, blood level oxygenation-dependent (BOLD) fMRI time series decreased with distance locally, and documented that the rate of decrease with distance ("spatial steepness") (a) was progressively lower from anterior to posterior areas, (b) was greater in women, especially in anterior areas, (c) increased with age, particularly for women, (d) was significantly correlated with percent inhibition, and (e) was positively and highly significantly correlated with pattern comparison processing speed (PCPS). A hierarchical tree clustering analysis of this dependence of PCPS on spatial steepness revealed a differential organization in processing that information between the two hemispheres, namely a more independent vs. a more integrative processing in the left and right hemispheres, respectively. These findings document sex and age differences in dynamic local cortical interactions, and provide evidence that spatial sharpening of these interactions may underlie cognitive processing speed differently organized in the two hemispheres.

Keywords: local cortical; age; processing speed; sex age; cortical circuitry

Journal Title: Journal of neurophysiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.