Spike-wave discharges (SWDs) are among the most prominent electrical signals recordable from the rat cerebrum. Increased by inbreeding, SWDs have served as an animal model of human genetic absence seizures.… Click to show full abstract
Spike-wave discharges (SWDs) are among the most prominent electrical signals recordable from the rat cerebrum. Increased by inbreeding, SWDs have served as an animal model of human genetic absence seizures. Yet, SWDs are ubiquitous in inbred and outbred rats, suggesting they reflect normal brain function. We hypothesized that SWDs represent oscillatory neural ensemble activity underlying sensory encoding. To test this hypothesis, we simultaneously mapped SWDs from wide areas (8x8 mm) of both hemispheres in anesthetized rats, using 256-electrode epicortical arrays that covered primary and secondary somatosensory, auditory and visual cortex bilaterally. We also recorded the laminar pattern of SWDs with linear microelectrode arrays. We compared the spatial and temporal organization of SWDs to somatosensory evoked potentials (SEPs), as well as auditory and visual evoked potentials (AEPs and VEPs) to examine similarities and/or differences between sensory-evoked and spontaneous oscillations in the same animals. We discovered that SWDs are confined to the facial representation of primary and secondary somatosensory cortex (SI and SII, respectively), areas that are preferentially engaged during environmental exploration in the rat. Furthermore, these oscillations exhibit highly synchronized bilateral traveling waves in SI and SII, simultaneously forming closely matched spread patterns in both hemispheres. We propose that SWDs could reflect a previously unappreciated capacity for rat somatosensory cortex to perform precise spatial and temporal analysis of rapidly changing sensory input at the level of large neural ensembles synchronized both within and between the cerebral hemispheres.
               
Click one of the above tabs to view related content.