It is critical for hearing that the descending cochlear efferent system provide a negative feedback to hair cells to regulate hearing sensitivity and provide the protection of hearing from noise.… Click to show full abstract
It is critical for hearing that the descending cochlear efferent system provide a negative feedback to hair cells to regulate hearing sensitivity and provide the protection of hearing from noise. Here, we report that the medial olivocochlear (MOC) efferent nerves, which project to outer hair cells (OHCs), also could innervate OHC surrounding supporting cells (SCs) to regulate hearing sensitivity. MOC nerve fibers are cholinergic and acetylcholine (ACh) is a primary neurotransmitter. MOC nerve endings, presynaptic vesicular acetylcholine transporters (VAChT), and postsynaptic ACh receptors were visible in SCs and the SC area. Application of ACh in the SC could evoke a typical inward current, which reduced gap junctions (GJs) between SCs and consequently declined OHC electromotility, which is an active cochlear amplification and can increase hearing sensitivity. This indirect, GJ-mediated inhibition enhanced the direct inhibition of ACh on OHC electromotility but had long-lasting influence. In vivo experiments further demonstrated that deficiency of this GJ-mediated efferent pathway declined the regulation of active cochlear amplification and compromised the protection against noise. In particular, distortion production otoacoustic emission (DPOAE) showed a delayed reduction after noise exposure. Our findings reveal a new pathway for the MOC efferent system via innervating SCs to control active cochlear amplification and hearing sensitivity. These data also suggest that this GJ-mediated efferent pathway may play a critical role in the long-term efferent inhibition and is required for protecting hearing from noise trauma.
               
Click one of the above tabs to view related content.