LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spinal cord injury is associated with changes in synaptic properties of the mouse major pelvic ganglion.

Photo by markusspiske from unsplash

Spinal cord injury (SCI) has substantial impacts on autonomic function. In part, SCI results in loss of normal autonomic activity that contributes to injury-associated pathology such as neurogenic bladder, bowel,… Click to show full abstract

Spinal cord injury (SCI) has substantial impacts on autonomic function. In part, SCI results in loss of normal autonomic activity that contributes to injury-associated pathology such as neurogenic bladder, bowel, and sexual dysfunction. Yet little is known of the impacts of SCI on peripheral autonomic neurons that directly innervate these target organs. In this study, we measured changes in synaptic properties of neurons of the mouse major pelvic ganglion (MPG) associated with acute and chronic SCI. Our data show that functional and physiological properties of synapses onto MPG neurons are altered after SCI, and differ between acute and chronic injury. After acute injury, excitatory post-synaptic potentials (EPSPs) show increased rise and decay time constants leading to overall broader and longer EPSPs, while in chronic injured animals EPSPs are reduced in amplitude and show faster rise and decay leading to shorter EPSPs. Synaptic depression and low pass filtering are also altered in injured animals. Lastly, cholinergic currents are smaller in acute injured animals, but larger in chronic injured animals relative to controls. These changes in synaptic properties are associated with differences in nicotinic receptor subunit expression as well. MPG CHRNA3 mRNA levels decreased after injury, while CHRNA4 mRNAs increased. Further, changes in the correlations of alpha- and beta-subunit mRNAs suggests that nicotinic receptor subtype composition is altered after injury. Taken together, our data demonstrate that peripheral autonomic neurons are fundamentally altered after SCI, suggesting that longer-term therapeutic approaches could target these neurons directly to potentially help ameliorate neurogenic target organ dysfunction.

Keywords: cord injury; synaptic properties; injury associated; changes synaptic; spinal cord; injury

Journal Title: Journal of neurophysiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.